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CHAPTER 1

Introduction

During the evolution of the IC industry, a new class of computers has emerged approximately

every decade. This trend was predicted by Bell’s Law and has accurately traced the development

of mainframe computers in the 1960s, to personal computers in the 1980s, to mobile computing

devices in the 2000s (Fig. 1.1) [1]. With each computer class, size reduces by roughly 100x, lower

cost makes computers more numerous and accessible, and IC developments increase processing

power. For example, a company may only have one mainframe that occupies a whole room, but

each of its employees has a smartphone that easily fits inside their pocket. Bell’s Law points to the

development of even smaller devices, namely millimeter-scale sensor motes.

Pervasive sensors will provide computing resources with a new, unprecedented level of acces-

sibility. Today, we interface directly with our laptops and smartphones, issuing direct commands

that the computers blindly follow. Miniature ubiquitous computers could one day enable cognitive

awareness in wireless networks. These future devices will autonomously monitor environmental

conditions and report unsolicited but useful information. In this way, pervasive sensors provide

us with 6th, 7th, and 8th senses beyond our biological sight, sound, smell, taste and feel. They

allow us to “feel” corrosion in our surrounding infrastructure and imperceptible seismic vibrations

that might damage it. These senses make it easier to detect and correct weaknesses in bridges

and buildings before catastrophic failure. The microsensors improve on our innate senses, giving

us the ability to detect single degree changes in temperature and single percent changes in humid-

ity. This accuracy enables smart buildings, where heating, ventilation and air conditioning (HVAC)

systems provide more-comfortable living and working conditions with lower energy costs. Ubiqui-
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Figure 1.1: Bell’s Law predicts a new class of smaller, more numerous computer systems every
decade. Massively deployed cubic-millimeter microsensors such as the presented IOP monitor are
the next step in this evolution of the IC industry.
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tous computers give us clairvoyance by extending our biological senses beyond their normal reach.

They allow us to detect shock waves when our package is dropped halfway across the world, so

we can ensure that the products are not damaged during transport.

Ubiquitous sensors must be inexpensive and seamlessly integrated with our surroundings to

be practical. Today’s sensors are composed of milliWatt components, including commercial-off-

the-shelf processors, analog components, and discrete passives, assembled on a printed circuit

board. These components and their assembly all have costs, decreasing the economic viability

of massively deployed sensor networks. Miniaturized densely integrated microsensors leverage

developments in integrated circuit processing technology to combine many of these components

to reduce cost. In general, large sensors are obtrusive and aesthetically displeasing, but for many

applications, millimeter-scale size is vital. For example, thinner surveillance motes more easily

avoid detection. Smaller medical implants make implantation less invasive and reduce trauma to

the surrounding tissue.

Microsystem components, including power sources, sensing elements and integrated circuits,

can be miniaturized, but additional system-level power constraints emerge. Because of today’s

devices’ high power consumption, they are powered by bulky power sources such as AA batteries

to obtain a lifetime of months or years. Energy harvesting sensors collect energy from their en-

vironment and can achieve energy-autonomous operation, where the device harvests more energy

that it uses. However large harvesting elements, such as centimeter-scale solar cells, are needed

to meet today’s sensors’ power demands. Millimeter-scale power sources can hold very little en-

ergy on-sensor. For example, a 12mm2 thin-film Li battery only has an energy capacity of 12µAh

[2], in contrast to a 3000mAh AA alkaline battery [3]. In addition, millimeter-scale energy har-

vesters deliver only a few microWatts of power with sporadic availability. These constraints limit

the average power consumption of millimeter-scale sensors to nanoWatts or picoWatts (Fig. 1.2).

A microsystem achieving these load powers requires a new class of low-power electronics that

use design techniques such as subthreshold operation, weak-inversion biasing, aggressive power

gating, and efficient low-load power delivery [4].

A canonical sensor system reads the digitized output of sensing elements (Fig. 1.3). A mi-

croprocessor (µP) performs digital signal processing and compresses the raw sensor data before

logging its result into memory, such as SRAM. The end user accesses the data from memory using

3
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Figure 1.3: A canonical millimeter-scale sensor system.

a wired or wireless interface. Energy-autonomous sensors are powered from energy harvesters that

deliver power to load circuits and recharge secondary power sources through power management

units (PMUs). Previous work has recognized the need for ultra-low-power circuits that are suitable

for miniature sensors. This work will be reviewed in this dissertation and includes low-power tech-

niques, microsystem subcomponents, and complete sensor systems. During my doctoral studies,

I have contributed to some of these research projects that have moved the field toward realizing

millimeter-scale microsystems (Table 1.1).

In this dissertation, we will overview two millimeter-scale energy-autonomous microsystems:

1st a cubic-millimeter wireless microsystem that monitors intraocular pressure (IOP) as part of a

treatment for glaucoma [14]; 2nd a nearly-perpetual temperature sensor that processes data with a

commercial ARM R© Cortex-M3
TM

µP [10]. These microsystems represent the first-known com-

plete, self-powered, millimeter-scale computers. They achieve zero-net drain of battery energy by

using solar energy harvesting and ultra-low-power operation. This dissertation details the power

management and SRAM subcomponents of the sensor systems. Chapters 2 and 3 discuss the

optimization of energy harvesters and dc-dc voltage converters for ultra-low harvester and load

powers. Chapters 4 through 6 discuss robust SRAM techniques that enable nanoWatt process-

ing for medium throughput applications such as image and audio processing in millimeter-scale

microsystems [5][12][17].
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Table 1.1: Research contributions to millimeter-scale sensors.
Project Contribution Ref.

Yield-driven near-threshold Simulation methodology [5][6]
SRAM design Simulation execution

Reconfigurable cache SRAM analysis [7]
Routing for fault-tolerant NoCs Algorithm development contributions [8]

Hybrid Fibonacci and linear Linear regulator design [9]
regulator DC-DC converter Testing

Millimeter-scale Top-level integration [10]
nearly perpetual PMU design

temperature sensor system Wakeup controller design
Level converter design

Top-level testing contributions
PMU testing

Ubiquitous sensing environments Literature review [11]
Crosshairs SRAM - SRAM design [12]

an adaptive memory for BIST design
mitigating parametric failures Testing
Double patterning lithography SRAM design [13]

and SRAM variability BIST design
Wireless sensing applications Literature review [4]

Cubic-millimeter Top-level integration [14]
energy-autonomous PMU design

wireless Wakeup controller design
intraocular pressure monitor Level converter design

Top-level testing contributions
PMU testing

High-density portless SRAM BIST design [15]
Ultra-low-leakage 10T SRAM Testing contributions [16]

Half-differential SRAM SRAM design [17]
with lower VMIN BIST design

and higher stability margins Testing
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CHAPTER 2

A Cubic-Millimeter Energy-autonomous Wireless Intraocular

Pressure Monitor

2.1 Continuous Intraocular Pressure Monitoring

2.1.1 Motivation

We present the first ubiquitous computer to combine sensing, processing, and wireless commu-

nication into a cubic-millimeter form factor. The microsensor monitors intraocular pressure (IOP)

as part a treatment for glaucoma. It allows doctors to more accurately sense pressure levels within

the eye, more quickly diagnose the severity of glaucoma, and improve their treatment regiments.

Glaucoma is the leading cause of irreversible blindness, affecting 67 million people worldwide

[18]. The disease damages the optic nerve due to elevated IOP and can cause complete vision loss

if untreated. Currently, IOP is the only metric used to diagnose the disease and check if the patient

is responding to treatments. IOP is commonly assessed using a single tonometric measurement,

which provides a limited view since it fluctuates with circadian rhythms and physical activity.

Continuous measurement would give doctors more information with faster response time about

the severity of the disease and the efficacy of treatments. It can be achieved with an implanted

monitor to improve treatment regiments, assess patient compliance to medication schedules, and

prevent unnecessary vision loss.
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2.1.2 Background

The ophthalmological community has recognized the benefits and challenges of continuous

IOP monitoring, motivating previous works in this area [18]. Patients measure their own IOP

through the eyelid without anesthesia [19]. This procedure is more convenient for frequent moni-

toring, but requires extensive patient intervention. A contact lens measures IOP-related changes in

eye curvature [20]. This reduces patient intervention, but requires the patient to wear the contact

for long periods of time including at night and is an indirect measurement of IOP. A pressure sensor

is implanted as part of a replacement lens (Fig. 2.1) [21]. This provides a more direct measurement

of IOP over longer periods of time than a contact can be worn, but requires lens replacement. IOP

monitors can be implanted in the anterior chamber of the eye to perform long-term monitoring

with minimal invasiveness and low patient intervention. A passive 4mm x 1mm monitor measures

IOP with 1mmHg resolution [22]. Using an active monitor allows IOP measurements without

per-measurement patient intervention for power transmission. Including a large antenna with these

monitors allows them to be inductively powered and improves data transmission, but complicates

implantation procedures and worsens eye trauma. A 2.3µW monitor measures IOP with 0.9mmHg

accuracy and uses a 1cm PCB loop antenna [23]. Another implanted solution stores energy on a

24µF capacitor array and uses a 27mm antenna [24].

2.2 Intraocular Pressure Monitor Overview

The most suitable implantation location is the anterior chamber of the eye, which is surgically

accessible and out of the field of vision (Fig. 2.1). The desired IOP monitor (IOPM) volume

is limited to 1.5mm3 (0.5×1.5×2mm3) by the size of a self-healing incision, curvature of the

cornea, and dilation of the pupil. The aggressive IOPM size constraint creates major challenges

for achieving high-resolution capacitance measurements, wireless communication, and multiyear

device lifetime. Little energy can be stored on the tiny microsystem, calling for ultra-low power

operation and energy harvesting. The required millimeter antennas or inductors result in lower

received power and higher transmission frequency, both increasing microsystem power.

A 1.5mm3 microsystem is presented for long-term IOP monitoring and wireless data transmis-

sion, with self-powered energy-autonomous operation (Fig. 2.2). The 2mm x 1.5mm x 0.5mm
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Figure 2.1: The 1.5mm3 IOP monitor is implanted in the anterior chamber of the eye as part of a
treatment for glaucoma.

monitor contains two integrated circuit (IC) chips fabricated in a 0.18µm CMOS process (Fig.

2.3). The top IC contains a solar cell and fully-integrated wireless transceiver (TRx). The bottom

IC contains a sigma-delta capacitance to digital converter (Σ∆ CDC) sensor interface, micropro-

cessor (µP), and static random access memory (SRAM). The solar cell and a thin-film solid-state

Li battery deliver power to the microsystem through power management units (PMUs), allowing

microsystem operation without patient intervention for power delivery. The ICs and battery are

encapsulated in a biocompatible glass housing. A MEMS capacitive pressure sensor is anodically

bonded to the outside of the housing and exposed to the ocular environment [25]. Communica-

tion and power transfer among the microsystem components uses wire bonds, with through-glass

silicon vias connecting the ICs and pressure sensor.

The microsystem samples IOP every 15 minutes, which represents continuous monitoring of

the slowly changing biological signal [26]. The measurement interval is set with a programmable

leakage-based timer located in the bottom wakeup controller (bottom WUC) (Fig. 2.4) [9]. When

the timer expires, the Σ∆ CDC monitors the pressure sensor’s capacitance and stores a 14b digital

representation of the data. After completing the CDC measurement, the µP wakes up, retrieves the

recently recorded IOP data from its memory-mapped location, performs digital signal processing,

and then logs its result into SRAM. Then the microsystem enters a nW standby mode until the next

9



Figure 2.2: IOP monitor system photo.
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Figure 2.3: The IOP monitor includes two ICs and a battery, encapsulated in a biocompatible
housing that includes a pressure sensor.

IOP measurement or user-generated event.

The implanted microsystem transmits IOP data to the user when wirelessly queried. To retrieve

data from the implanted monitor, the doctor or patient places a handheld external wand over the

eye. The wand transmits a wireless radio-frequency (RF) signal to the monitor. The TRx detects

this signal, activates a µP program that retrieves logged data from SRAM, and coordinates the TRx

as it send data to the external wand. After data transmission is complete, the microsystem again

enters a nW standby mode to conserve power until the next event.

IOP monitors should achieve a lifetime of years to provide feedback to doctors while they tailor

glaucoma treatments for each patient. The demonstrated microsystem operates with zero-net drain

of battery energy for an indefinite lifetime using a combination of solar energy harvesting and

ultra-low-power operation. The solar cell provides a 0.5V power source (VSOLAR) which is used

to recharge the 3.6V battery (V3P6). Voltage up-conversion is performed with a fully-integrated

switched capacitance voltage regulator (SCVR) located in the bottom PMU. The microsystem

conserves energy by using low-power techniques. Weak inversion biasing is used in the 7.0µW

CDC and short transmit pulses are employed in the 4.7nJ/bit TRx. Near-threshold processing

reduces µP and SRAM active mode energy to 90nW. Power-gating, length-biasing, and device
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Figure 2.4: IOP monitor block diagram.
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selection minimize µP and SRAM standby mode power to 72pW. The same SCVR used for energy

harvesting delivers power to the low-voltage digital circuits (V0P45) with 75% active mode and

40% light-load standby mode efficiencies.

2.3 Power Management and Energy Autonomy

2.3.1 PMU Background

Efficient energy harvesting and voltage regulation is necessary for energy-autonomous oper-

ation. Environmental energy is sporadic and must be stored on a secondary supply for continu-

ous power. Solar cells output below 500mV [27] and secondary supplies commonly have higher

voltages because of energy density or battery chemistry constraints, requiring dc-dc voltage con-

version. Converter efficiency degrades at low loads because overheads do not scale down propor-

tionally to delivered power. A low-power energy harvesting boost converter demonstrates 80%

efficiency with a 100µW harvester and 45% at 1µW [28]. However, boost converters require large

external inductors that do not meet the IOPM volume constraints. Switched capacitor voltage

regulators (SCVRs) can be designed to perform dc-dc conversion using integrated capacitors. Har-

vesting SCVRs achieve 84% efficiency at 1mW [29] and 40% at 958nW [10].

Energy stored on the secondary battery must be converted to the load circuit voltage levels. A

buck-converter demonstrates 80% efficiency at a 1µW load [30]. As with energy harvesting boost

converters, buck-converters require external inductors which are too large for the IOP monitor,

and SCVRs achieve similar functionality with integrated capacitors. A down-converting SCVR

achieves approximately 76% efficiency at a 100µW load and 60% at 1µW [31]. Linear regula-

tors exhibit high line regulation and low output noise, but suffer from poor efficiencies at high

conversion ratios and cannot be reused for energy harvesting. Hybrid SCVR plus linear regulator

systems increase efficiency by reducing linear regulator dropout in systems with high conversion

ratios. Hybrid dc-dc converters demonstrate efficiencies of 55% at 126nW [9] and 18% at 100pW

[10]. A performance summary of demonstrated previous works in energy harvesting and voltage

regulation is shown in Table 2.1.
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Table 2.1: Performance summary of previous works in dc-dc voltage conversion.
Reference Method Efficiency Power VIN VOUT

[28] Boost 80% 100µW 250mV 1V
[28] Boost 45% 1µW 250mV 1V
[29] SCVR 84% 1mW 1.15V 2.1V
[29] SCVR 10% 1µW 1.15V 2.1V
[10] SCVR 40% 958nW 865mV 3.6V
[30] Buck 80% 1µW 1.2V 500mV
[31] SCVR 76% 100µW 1.2V 500mV
[31] SCVR 60% 1µW 1.2V 500mV
[9] Hybrid 55% 126nW 3.6V 444mV

[10] SCVR 41% 100nW 3.6V 400mV
[10] SCVR 18% 100nW 3.6V 400mV

2.3.2 PMU Implementation

The PMU recharges the battery from the solar cell and delivers power to load circuits (Fig.

2.5). The 0.07 mm2 solar cell is fabricated in an unmodified CMOS process using the deep n-well

to p-well and p-well to n-active diodes. It is located underneath the transparent TRx coil openings

to save area. The output of the solar cell (VSOLAR) connects to the V0P45 node of the SCVR.

When VSOLAR exceeds 450mV, the 8:1 SCVR up-converts the harvested energy to above 3.6V and

recharges the battery. The thin-film solid-state Li battery is supplied by Cymbet Corporation and

uses a commercial chemistry, but its size is tailored specifically for this application [2]. V0P45 also

supplies the µP and SRAM, allowing the solar cell to directly power the load circuits. When the

open-circuit solar cell voltage drops below V0P45, the solar cell acts as a load to the microsystem

and is disconnected. The open circuit voltage is detected using a small replica solar cell. When

V0P45 drops below 0.45V, power is down-converted from the battery by the same SCVR used

for energy harvesting and delivered to the load circuits. Voltage comparisons in the PMU are

performed with clocked comparators that are switched by the SCVR and top WUC clocks.

The SCVR uses an 8:1 ladder topology to perform dc-dc voltage up and down conversion (Fig.

2.6). The ladder contains dc nodes at 450mV intervals, and transfers charge up and down the

ladder between adjacent nodes. Eight 35 pF MOS capacitors store charge on the dc nodes. MOS

capacitors achieve higher density, and their parasitics have little effect on SCVR performance since

the voltages on these capacitor terminals do not change. Seven 45 pF MIM capacitors transfer
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Figure 2.5: The battery is recharged from the solar cell, directly powers the CDC and TRx, and is
converted down to supply the digital components.

charge between the dc nodes and are located on top of the MOS caps in the physical design. The

voltages on these capacitor terminals change when the SCVR is clocked, so MIM capacitors are

used to reduce parasitic bottom plate capacitance. High efficiency at nanoWatt loads requires ultra-

low-power operation of SCVR circuitry. Switching losses dominate conductive losses at the IOP

monitor’s low power levels, so clock load and voltage swing is minimized to increase efficiency.

The power switches are minimum sized high-VT H thick-tOX IO devices. NMOS switches are used

except for the highest voltage portions of the ladder, where PMOS devices are used to increase

overdrive. The 100kHz clock is generated at 0.9V from an internal SCVR node, level converted

to 1.8V clocks with dc offsets of 0V, 0.9V, and 1.8V, and used to drive the power switches. Level

conversion is performed with differential cascade voltage switch (DCVS) gates that are supplied

from internal SCVR nodes.

2.3.3 PMU Measured Results

The IOP monitor is tested in a laboratory to verify functionality and energy autonomous op-

eration (Figs. 2.7 and 2.8). This section details the measurement results for the IOP monitor’s

PMU. The PMU is tailored for specific voltage levels and load powers to maximize sensor life-
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Figure 2.6: The SCVR uses an 8:1 ladder topology to perform dc-dc conversion between the solar
cell, battery, and load circuits.

time. Therefore the PMU operation and optimization depends heavily on the microsystem’s power

sources and loads. With IOP measurements every 15 minutes, 10,000 µP cycles for DSP per mea-

surement, and daily transmission of 14b raw IOP data, the average microsystem power is 5.3nW

(Table 2.2). Standby TRx leakage and active CDC power dominate the microsystem’s energy re-

quirements. The transmitter uses large devices in the combined LO and PA to transmit sufficient

power for the external wand to detect. These large devices have 3.3nW leakage in standby mode

even though they are implemented as low-leakage IO devices. The CDC requires 10,000 cycles

to achieve the target IOP accuracy of 0.5mmHg, setting the CDC energy per measurement. Dig-

ital components make smaller contributions to IOP monitor energy usage. In active mode, the

SCVR delivers power from the 3.6V battery to the 90nW 0.45V µP, SRAM, and WUCs with 75%

efficiency (Fig. 2.9). In standby mode, it delivers 72pW with 40% efficiency.

The IOP monitor achieves energy autonomy by harvesting more energy than it requires for

operation. In sunlight, VSOLAR reaches 500mV, and 80nW is delivered to recharge the battery (Fig.

2.10). In bright indoor lighting, VSOLAR drops to near 460mV, but the battery is still recharged

with 13nW, more than offsetting the 5.3nW monitor’s power consumption. The IOPM requires
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Figure 2.7: IOP monitor test setup.

Figure 2.8: IOP monitor testing board.
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Table 2.2: Power breakdown for the 5.3nW IOP monitor.
Component Mode Power Time/Day Energy/Day

CDC Active 7.0µW 19.2s 134.8µJ
TRx Active 47.0mW 134.4µs 6.3µJ

SCVR Active 116.9nW 19.2s 2.2µJ
◦ µP + SRAM Active 90.0nW 19.2s 1.7µJ

CDC Standby 172.8pW 24hr 14.9µJ
TRx Standby 3.3nW 24hr 285.1µJ

SCVR Standby 174.8pW 24hr 15.1µJ
◦ µP + SRAM Standby 9.8pW 24hr 846.7nJ
◦ WUC Standby 62.0pW 24hr 5.2µJ
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Figure 2.9: The SCVR is optimized for low switching and conduction losses to achieve 75%
efficiency.
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Figure 2.10: The solar cells and SCVR deliver 80nW of power to recharge the battery.

10 hours of indoor lighting or 1.5 hours of sunlight per day to achieve energy-autonomy. Energy-

autonomy makes the IOP monitor lifetime decades or longer, giving doctor’s enough time tailor a

patient-specific glaucoma treatment.

2.4 Conclusion

We have demonstrated a complete implantable microsystem for monitoring IOP as part of a

treatment for glaucoma. The 1.5mm3 microsystem size makes it easily implantable. It measures

IOP with 0.5mmHg accuracy and transmits the data through the cornea to the patient or doctor,

providing rapid IOP feedback to decrease physician response time and potentially prevent unnec-

essary vision loss. It uses energy harvesting and ultra-low-power circuit techniques to achieve

energy autonomy, extending lifetime indefinitely and giving doctors time to converge upon the

best glaucoma treatment. These circuit techniques for energy autonomy enable cubic-millimeter

microsystems that can be used for other medical implants, such as blood pressure and glucose

sensors, as well as non-medical applications, such as supply chain and infrastructure monitoring.

These pervasive sensors represent the continuation of Bell’s Law, which predicts a new class of

computer system’s every decade and accuracy traces the evolution of computers as they have be-
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come smaller, more numerous, and more powerful. In conclusion, the development of millimeter-

scale massively-deployed ubiquitous computers ensures the continuous expansion and profitability

of the semiconductor industry. Energy-autonomous and nanoWatt circuit techniques will allow us

to meet this next frontier in IC design.
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CHAPTER 3

A Millimeter-scale Nearly Perpetual Sensor System with

Stacked Battery and Solar Cells

We present the first millimeter-scale, nearly-perpetual temperature sensor. The microsystem

has sensing, processing, and data storage functionality in an unprecedented form factor and power

envelope. It harvests more solar energy than it consumes to perform system tasks, achieving zero-

net-energy operation. The device could be used to accurately monitor working and living condi-

tions in smart buildings, thus improving the energy-efficiency and accuracy of heating, ventilation,

and air conditioning (HVAC) systems. It could also monitor pharmaceuticals during transport, to

ensure that improper storage temperatures did not damage the products.

The energy-autonomous microsystem assembled into an 8.75mm3 form factor consisting of

three layers of solid-state chips (Fig. 3.1). The top layer contains two series-connected 1mm2

solar cells which are the primary power source for the microsystem. These solar cells recharge

a thin-film Lithium secondary battery on the bottom layer of the microsystem, which stores solar

energy and provides instant-access power. The solar cell and battery supply power to integrated

circuits in the middle layer of the assembly through an integrated PMU. These circuits include a

smart temperature sensor, ARM R© Cortex-M3
TM

microcontroller, SRAM, and wakeup controller

(WUC). The microsystem harvests all of the energy required to run its low-power circuitry from

the solar cells, achieving energy-autonomy. This energy is stored on a 3.6V, 12µAh, thin-film

solid-state Lithium battery provided by Cymbet [2]. Energy autonomy eliminates maintenance for

battery recharging or replacement, making the system more economically viable to deploy.
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Figure 3.1: The mm-scale sensor is assembled in three layers of silicon chips for a total volume of
under 9mm3.
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The microsystem spends the majority of its lifetime in a pW standby mode and periodically

wakes up to sample the environmental temperature. In standby mode, the sensor circuits and M3

microcontroller are power gated. Ultra-low-leakage 3.3fW/bit retentive SRAM (R-SRAM) holds

state and data. The interval of temperature measurements is set by a programmable timer. When

the timer expires, the microsystem enters active mode and the M3 reads digital temperature data.

The M3 can be programmed to process and compress the data using a widely-used and trusted

instruction set. Then the system logs its final result into the R-SRAM and returns to standby mode.

3.1 Background on Power Management

The power management unit in the microsystem recharges the secondary battery from the solar

cells, and delivers power from the sources to the load circuits. Energy harvesters, power sources

and load circuits do not operate at the same VDDs, requiring voltage conversion. DC energy har-

vesters, like solar cells, are typically capable of producing output voltages at or below 500mV [27].

Since harvested energy is only sporadically available, it is stored on a secondary power supply

which provides instant-access energy for the sensor. Typical secondary batteries have chemistries

with output voltages ranging from 3.6V (Lithium ion) to 1.5V (Alkaline, Nickel-metal hydride,

Zinc-air). The energy harvester and secondary power source may supply analog circuits requiring

VDD above 1V and ultra-low power digital circuits near 500mV.

Voltage conversion circuits include switched capacitor networks (SCNs), low dropout linear

regulators (LDOs), and Buck-boost converters. One of the primary challenges for power delivery

is achieving high conversion efficiency. Buck-boost converters and SCNs ideally achieve 100%

power efficiency [32]. Low-power Buck-boost converters have been demonstrated that accommo-

date a wide range of input and output voltages with high efficiency [28][30]. However, Buck-boost

converters require a large inductor which is usually an external passive device that is larger than

mm-scale. SCNs perform the same functions using large capacitors, which can be integrated on

chip [31][9][29]. Low power LDOs provide improved noise, line regulation, and load regulation,

which are needed by many VDD-sensitive circuits [33]. However, the ideal LDO power efficiency

is the inverse of the voltage conversion ratio. The efficiency equals the battery voltage (VBAT T ) di-

vided by the load VDD, which is low in many battery-powered systems. In addition, LDOs perform
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only down conversion and are not suitable for recharging from an energy harvester.

Power management units (PMUs) for load powers ranging from mWs to tens of µWs can

achieve greater than 70% efficiency, as demonstrated by a 1.2V to 0.5V, 5µW dc-dc converter

[34]. However, as load currents decrease, the power of the PMU itself must scale to nW or pW

levels to maintain efficiency, creating challenges for ultra-low-power SCN clock generation and

distribution. A low-power 0.26mm2 PMU demonstrates an efficiency of 55% and is suitable for

load powers between 125nW and 330nW [9]. It uses a hybrid SCN plus LDO topology to capture

the efficiency of the SCN and voltage stability of the LDO. However, this LDO prevents the PMU

from performing up-conversion for energy harvesting. A demonstrated SCN for energy harvesting

achieves 84% efficiency at 1mW and 10% at 1µW when up-converting from a 1.15V rectified

source to 2.1V [29].

3.2 Power Delivery and Management

The power management unit (PMU) controls the transfer of energy between the power sources

and load circuits (Fig. 3.2). This unit receives commands from the WUC, and implements the

energy harvester, dc-dc voltage converter, and power gates for the microsystem. Power electronics

are co-optimized for harvesting energy, recharging the battery, and down-converting power to the

load circuits.

3.2.1 Solar Cells

The system harvests all of the energy it requires for operation from two series connected 1mm2

solar cells (Fig. 3.3). Each solar cell is comprised of parallel p-well to deep-n-well and p-well

to n-active p-n junctions fabricated in a 0.18µm CMOS process. No post-processing steps to im-

prove the solar cell performance were performed. Fabrication steps built into the CMOS process

were used to remove the opaque nitride and silicide layers over the solar cell and improve solar

efficiency. The absence of exotic materials and specialized assembly processes reduce the cost

and ease dense integration with integrated circuits. If a commercial solar cell were used, then the

system could achieve energy-autonomous operation in lower lighting conditions.
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Figure 3.4: The switched capacitor network converts power at different voltages among the power
sources and load circuits. Reduced swing clocks and level converters (LC) are used to reduce
switching overhead.

3.2.2 Energy Harvesting

Energy is stored on a battery since the system requires a constant VDD but solar energy is

sporadic. The PMU uses a ladder-topology switched capacitor network (SCN) to up-convert the

voltage from the two series PV cells (<900mV) by 6x to recharge the battery (3.6V) (Fig. 3.4).

Six series metal-insulator-metal (MIM) capacitors provide charge storage for internal SCN nodes,

with voltages from 0V to 3.6V in steps of 0.6V. Another 5 MIMs are switched to transfer charge

between successive nodes. For our target load, SCN switching losses are more dominant than

conductive losses. Therefore, the SCN reduces clock overhead by using 1.2V clocks to drive its

power switches, instead of full-swing 3.6V clocks. The PMU clock generator is generated from

the 1.2V internal node of the SCN and level converted up the ladder. Level converters have a cross-

coupled inverter pair supplied from a higher internal SCN voltage, and native zero-VT H write pass

transistors that are driven by lower voltage clock signals.

When there is no light, the solar cells are disconnected from the PMU, since they act as large

forward-biased pn-junction and load to the SCN. The lighting condition is calculated by monitoring

the open-circuit voltage (VOC) on replica solar cells (RSC) included in the system. The voltage

on the harvesting solar cells (HSC) cannot be monitored since they may be shorted to the SCN.

The total solar cell area seen in Fig. 3.1 is 4mm2, with 2mm2 HSCs and 2mm2 RSCs. When VOC
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exceeds VDD 0P6, the HSCs are connected to the SCN and input energy into the microsystem. The

HSC voltage is compared to VDD 0P6 with a clocked comparator using the SCN clock.

3.2.3 Standby Mode

Reducing total energy consumption requires reducing the power of the sensors, microproces-

sor (µP), and SRAM and also efficiently delivering power to these load circuits from the power

sources. Voltage down-conversion from the battery is performed with the same SCN used for en-

ergy harvesting. The SCN automatically converts up from the solar cells or down from the battery

based on the power source and load VDD levels.

For an SCN with these ultra-low-power loads, the power overhead must scale to pW and is

dominated by clock generation and distribution. Switching power is reduced by minimizing the

clock frequency and load. The SCN frequency is dynamically scaled from a maximum of 50Hz.

The 50Hz SCN accommodates the worst case load current for standby mode. However, loads

vary with temperature and system activity. When load current decreases, slower SCN operation

will adequately power the system with lower overhead. To achieve this, the SCN is only clocked

when VDD 0P6 drops below an acceptable voltage of 550mV. VDD 0P6 is compared with a reference

voltage using a clocked comparator, whose output is used to gate the SCN clock. This on-demand

power delivery yields a 20% improvement in efficiency.

Generating a pW ultra-low-frequency clock is one of the primary WUC design challenges. A

clock can be generated using a current-started ring oscillator (CSRO) with an analog bias voltage.

However for very low frequencies, these structures have reduced output swing and high frequency

sensitivity to the bias voltage value. Alternatively, we use a leakage-based ring oscillator (LRO) to

alleviate these issues.

Fifteen 0.4V leakage-based delay elements are connected into a ring to create the 50Hz LRO.

Each delay element switches between two stable states using leakage power (Fig. 3.5). Starting

in one stable state, the differential output nodes (Z, Zbar) are held to the power rails. After the

differential inputs (A, Abar) transition, the outputs float. Differing drain to source voltages across

the leaking devices will cause the output nodes to drift toward the metastable state of the cross-

coupled pair. This changes the gate voltages on the leaking transistors and initiates a positive
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Figure 3.5: Slow clocks for the wakeup controller and standby mode switched capacitor network
are efficiently generated using a leakage-based delay element.

feedback mechanism to fully switch the output nodes. This leakage based operation with positive

feedback creates outputs with long delay but with risetimes and falltimes an order of magnitude

better, when compared to a CSRO with the same energy and frequency.

The power switches and level converters represent SCN clock loads and are minimized to

reduce power. Minimum-sized level converters have adequate performance for the 1.2MHz active-

mode operation. Typically, SCN switches are made very large to reduce their resistance and min-

imize conductive losses. However since our load currents are small, these conductive losses are

negligibly small and the switches are minimum sized.

3.2.4 Active Mode

In active mode, the µP load power increases from pWs to µWs. During this transition, the

power gated VDD rails are recharged causing a power spike. Special care is taken to ensure this

does not overly tax the PMU, causing destructive VDD drops that could lead to data loss. To switch

to active mode, the SCN first switches to a separate 1.2MHz clock, maximizing the power the SCN

can deliver. Secondly, the power-gated VDD rails are slowly charged through a resistive network

(Active && !Strong in Fig. 3.6). This reduces peak power to levels the SCN can accommodate.
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Figure 3.6: The linear regulator turns the switched capacitor output into a stable 0.4V supply across
battery voltage and temperature.

Finally, after the power rails are fully charged, they are connected to the SCN though low-resistance

devices to minimize power supply noise and µP operation begins.

In active mode, an LDO is added to remove voltage transients on the system supply rails due

to SCN clock injection and load current transients (Fig. 3.6). To reduce LDO losses, the dropout

is kept as small as possible and the LDO bias current is minimized. The LDO converts VDD 0P6

which is supplied by the solar cells and SCN, to 0.4V. The output voltage is set by a 2.2-pW voltage

reference (Fig. 3.7) [35]. The LDO is biased with a 30nA device in weak inversion to minimize

energy while still preventing unacceptable VDD drops due to load transients. In standby mode, this

LDO is bypassed, with its bias current eliminated. The SCN alone can provide a stable VDD in

standby mode since there is little switching activity and thus no sudden changes in load current.

3.3 Measured Results

3.3.1 Solar Cell

The solar cell IV curve is measured using a solar simulator to match the sun’s spectrum with an

irradiance of 1 sun in the air mass 1.5 standard (AM 1.5). The short circuit current is 31µA and its

open circuit voltage is 540mV for one solar cell at 1 sun (Fig. 3.8). The maximum solar efficiency
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Figure 3.7: The output of the linear regulator is generated using a picoWatt voltage reference.

is 5.5%. AM 1.5 is commonly used to characterize solar cells and one sun was originally chosen

to represent ideal conditions in the United States, however actual outdoor lighting intensity and

spectrum can vary significantly [36]. Solar current scales almost linearly with light irradiance and

our measured indoor lighting conditions are near 0.01 suns. The performance of the solar cell is

poorer than commercial devices because of our selection of cheap and widely available materials.

However even with a non-optimal solar cell, the microsystem achieves zero-energy operation.

3.3.2 Power Delivery

The nearly-perpetual temperature sensor system is tested in a laboratory to verify functionality

and energy autonomous operation (Figs. 3.9 and 3.10). This section details the measurement

results for the temperature sensor system’s PMU. The hybrid voltage converter captures the energy

efficiency of the SCN and voltage stability of the LDO. Using an LDO alone would result in an

ideal efficiency of 11%, while the hybrid topology achieves 40% efficiency. The SCN output itself

has a voltage ripple of 50mV because of SCN switching. The LDO reduces this ripple to under

1mV for DC load currents. The SCN output voltage decreases with decreased VBAT T and increased

load currents. However, the VDD is held at a constant 0.4V using the LDO. A load regulation of
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Figure 3.8: Solar cell VI curve at a light intensity of 1 sun AM 1.5.

2.4% is achieved between 0µW and 6.25 µW loads (Fig. 3.11). Also, a line regulation of 0.72% is

achieved when VBAT T degrades from 3.6V to 3.3V (Fig. 3.12).

Active mode PMU down-conversion efficiencies are measured for load currents ranging from

100nW to 2.5µW (Fig. 3.13). The SCN efficiency nears 40% at load currents above 1.5µW, with

an ideal efficiency of 66% because of LDO dropout losses. Using a fixed SCN clock frequency, the

efficiency degrades as load current decreases because of the fixed energy overheads in the SCN.

Switching overhead is reduced using on-demand power delivery that skips SCN clock pulses when

the output voltage conditions are already satisfied (3.14). This increases the low-load efficiency of

the PMU, with a 4.75x efficiency improvement at a 100nW load (Fig. 3.13). With energy-efficient

voltage conversion plus the ultra-low power consumption, the microsystem power is 7.7µW in

active mode and 550pW in standby mode. This translates to a device lifetime exceeding 5 years

with hourly temperature measurements using 10,000 µP cycles when the PMU cannot harvest light

energy.

3.3.3 Nearly-Perpetual Operation

During sensor measurements and processing, the microsystem draws power from the battery

because the tiny solar cells cannot deliver the required µW load powers. However, between sensor
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Figure 3.9: Nearly-perpetual temperature sensor system test setup.

Figure 3.10: Nearly-perpetual temperature sensor system testing board.
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Figure 3.11: Hybrid switched capacitor network and low dropout regulator load regulation.

Figure 3.12: Hybrid switched capacitor network and low dropout regulator line regulation.
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Figure 3.13: Active mode SCN down-conversion efficiency nears 40% out of an ideal 66%. Low-
load efficiency is improved using on-demand power delivery.

Ungated SCVR Clock

SCVR Clock

Ski p p ed P u ls es

V0P6

Figure 3.14: Measured waveforms of on-demand clock of the switched capacitor network, which
is not switched when the output voltage is sufficiency high.
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Figure 3.15: Measured battery VI curves for microsystem charging and discharging cycles.

measurements, the load power drops to pWs, and the PMU recharges the battery in both indoor

and outdoor lighting conditions. Measured battery voltage and current during charging and dis-

charging cycles are shown in Fig. 3.15. The tiny, low-efficiency solar cells harvest more solar

power in indoor lighting than the microsystem consumes on average because of the low-power

techniques employed. Therefore when light is available, the system lifetime does not depend on

battery capacity or energy consumption but instead on device wearout.

Nearly-perpetual operation is achieved when the standby period is long enough to recuperate

energy used in active mode. The necessary standby duration for energy-autonomous operation

depends on the battery recharge rate, which in turn depends on light intensity. Fig. 3.16 shows the

number of sensor measurements that can be taken each day in different lighting conditions with

zero-net drain of the battery. This plot assumes that each sensor measurement requires 10,000 µP

clock cycles to perform. Even in indoor lighting conditions as low as 0.005 suns AM 1.5, nearly-

perpetual operation is achieved. On a sunny day 15,000 sensor measurements can be taken with

no net energy discharge from the battery.
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Figure 3.16: The duty cycle of the microsystem while achieving zero-net drain of the battery across
lighting conditions.

3.4 Conclusion

An 8.75mm3 temperature sensor system achieves zero-net-energy operation with energy har-

vesting and ultra-low-power techniques. A 28pJ/instruction, 0.4V, 72kHz ARM R© Cortex-M3
TM

microcontroller processes temperature data. A custom 3.3fW leakage per bit SRAM stores the µP

result. Two 1mm2 solar cells and a thin-film Li battery power the microsystem through an inte-

grated power management unit. The complete microsystem consumes 7.7µW when active. It then

enters a 550pW data-retentive standby mode between sensor measurements. The microsystem can

process hourly temperature data for 5 years using only energy stored on the battery. This lifetime

is extended indefinitely using energy harvesting to recharge the battery, enabling nearly-perpetual

operation. The microsystem’s small size makes it suitable for temperature sensing in heating,

ventilation, and air conditioning systems, supply-chain monitors, and many other applications.
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CHAPTER 4

Yield-driven Near-threshold SRAM Design

4.1 Introduction

Intelligent millimeter-scale microsystems require memory to perform on-sensor processing.

Greater memory capacities allow microsystems to store more environmental data, which is espe-

cially useful for high-throughput sensing modalities like audio and image sensing. More memory

also enables more advanced processing algorithms to extract useful information from the raw sen-

sor data. These programs include word recognition and line detection algorithms. For nanoscale

ubiquitous computers, memory capacities are limited by area, and also by the energy budget.

Therefore dense, low-power SRAM is necessary for intelligent cubic-millimeter microsensors.

A simple and effective way to reduce energy is to scale down VDD. This delivers a quadratic

savings in dynamic energy consumption and a linear reduction in leakage power [37] [38] [39].

As shown in Figure 4.1, as VDD is scaled down into the near-VT H region, between 400mV and

700mV, the energy per operation is significantly reduced and delay degrades gracefully [37] [38].

As VDD is scaled further, delay increases dramatically and total energy per cycle increases because

leakage energy dominates. Leakage energy per computation increases as VDD is scaled down, even

though leakage power lowers, since it is proportional to delay, which increases exponentially in

the sub-VT H region. There exists a VDD where the total energy per operation is minimized (VMIN).

VMIN depends heavily on the ratio of dynamic to leakage energy for the circuit. Compared to

combinational logic, which commonly has sub-VT H VMIN , caches have more idle circuitry and a

lower activity rate. This increases the ratio of leakage to the dynamic energy and subsequently
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Figure 4.1: VDD scaling quadratically reduces dynamic energy and linearly reduces leakage power.
Since delay increases exponentially, leakage energy per instruction increases and dominates total
energy at low VDD. These competing trends result in a VDD that minimizes total energy per instruc-
tion, denoted as VMIN .

increases VMIN into the near-VT H region for common cache configurations. In this paper we target

SRAM designs to robustly operate near VMIN in the near-VT H region.

As VDD is scaled down, the ON/OFF current ratio for devices is reduced and noise margins di-

minish. Typically, CMOS circuitry maintains adequate robustness in the presence of these effects.

However, Static Random Access Memory (SRAM) becomes more prone to functional failures at

low VDD, as evidenced by the reduction in the static noise margin (SNM) shown in Figure 4.2.a

[40]. In addition at low VDD, bitcells are more susceptible to VT H variation caused by random

dopant fluctuation (RDF). RDF shifts the VT H of each transistor independently, causing mismatch

within bitcells and greatly reducing SNM, as shown in Figure 4.2.b. When SRAM VDD is scaled

down these VT H shifts have a greater impact on device currents. At near-VT H VDDs, RDF is the

dominant form of process variation and the foremost reason for poor robustness in sub-VT H and

near-VT H SRAM. Making SRAM transistors larger can increase SRAM robustness since non-

uniformities in channel doping average out, resulting in more uniform device VT Hs [41]. The cost

of increased device sizing is larger SRAM area and higher energy.

One proposed solution for near-VT H SRAM is the 8T bitcell [42]. The 8T bitcell connects two
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Figure 4.2: a) Static noise margin (SNM) scales with VDD. b) Random dopant fluctuation (RDF)
induced VT H variation causes mismatch in SRAM bitcells, reducing robustness and SNM . At near-
VT H , SRAM robustness is more sensitive to VT H variation because drain current is more sensitive
to gate overdrive.

additional stacked NFETs to the differential 6T structure to isolate the read and write accesses.

A separate read wordline and read bitline are employed to perform a single-ended read on the

bitcell with no risk of upsetting the bitcell’s value. The separate read structure allows the other

six devices to be sized and doped appropriately to ensure write stability. A typical 8T bitcell is

over 33% larger than a differential 6T bitcell but may have higher array efficiency [42]. Further

solutions for high robustness SRAM use read and write assist circuits [43] [44] [45] [46] [47].

These circuits modulate the WL, BL or VDDs to prevent functional failure. These techniques have

the advantage of keeping bitcell density high, but may require extra overhead such as additional

peripheral devices or voltage sources.

Numerous ultra-low energy SRAMs reduce energy by scaling VDD to sub-VT H levels [47] [48]

[49] [50] [51]. A single-ended 6T SRAM has been demonstrated that is functional below 200mV

with a 40% area penalty [47]. A multiplexer tree can be used to read data values and improve

read stability [48]. A 10T cell bitcell was designed with assist circuitry to improve bitline sensing

[49]. Incorporating a Schmitt trigger into the cross coupled inverters can prevent read failures

and improve hold margins [50]. Also, multiple-VT H designs exist for improving robustness and

reducing leakage [51]. Many of these ultra-low energy SRAMs exhibit insufficient robustness

for commercial designs, where SRAM sizes reach MBs, limiting them to small arrays and sensor
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applications. Also, increased delay, and thus leakage, for these architectures may cause sub-VT H

operation to be suboptimal for minimum energy operation.

In our study we take a new look at the existing differential 6T and 8T bitcell architectures by

thoroughly comparing the two designs in robustness, area, delay, and energy in the super-VT H and

near-VT H voltage regimes in order to explore energy savings through voltage scaling [42]. In our

study we constrain all bitcells at all VDDs to have equal robustness to a commercial differential 6T

at a 1V supply. As VDD is scaled down, either the bitcell doping and sizing will be adjusted or

assist circuits will be employed to meet these constraints.

To calculate robustness, we model RDF-induced random process variation. The effects of

process variation may be measured through either SNM measurement, corner case analysis, Monte

Carlo simulation or analytical modeling [40] [52]. However, SNM analysis does not consider the

dynamic nature of noise injection. Corner case analysis is pessimistic, resulting in over-optimized

bitcells and unnecessary area and power. Monte Carlo simulation is extremely computationally

intensive for SRAM because the acceptable failure rate is low. Alternatively, we calculate SRAM

robustness using importance sampling. We sample heavily in the failure region of interest, reducing

the number of samples needed to characterize the failure modes [53]. The resulting samples are

weighted using device VT H probabilities to calculate the SRAM yield [54]. Importance sampling

allows us to accurately and efficiently calculate bitcell yield.

We find that halving VDDs from 1V to 500mV for differential 6T bitcells halves dynamic energy

with either a 40% area overhead or a 200x delay penalty for maintaining robustness. Halving VDDs

for 8T bitcells also halves dynamic energy with no area overhead and preserved cache latency. The

8T bitcell can be further scaled to 300mV to cut dynamic energy by 83% with a negligible area

overhead. Using this information we find the VMIN and energy at VMIN (EMIN). VMIN can be as low

as 300mV for 8T L1 caches with high access rates and as high as 950mV for L2 caches with low

access rates.

In this paper we contribute a framework for selecting an appropriate SRAM architecture given

a set a design constraints, including near-VT H robustness. We show that VMIN for SRAM is sig-

nificantly higher than VDDs targeted in previous designs, and hence guide the focus of new SRAM

research for energy efficiency. The rest of this paper is organized as follows: Section 4.2 discusses

the topology and operation of the candidate architectures; Section 4.3 examines the simulation
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Figure 4.3: The candidate bitcells: a) Differential 6T b) 8T.

setup and importance sampling methodology; Section 4.4 presents our results, and Section 4.5

concludes this chapter.

4.2 Candidate SRAM Architectures

4.2.1 Differential 6T Bitcell

For the differential 6T bitcell shown in Figure 4.3a, a read is performed by precharging and

floating the bitlines (BL and B̄L) in the desired columns at VDD and asserting the wordline (WL) in

the desired rows. The bitcell pulls down either BL or B̄L depending on the bitcell’s state, and the

voltage differential is detected using a sense amplifier. A write is performed by driving opposite

values onto the bitlines and asserting WL, overwriting the value held in the bitcell.

Bitcells are susceptible to four prominent failure modes: read upset, write, timing and hold.

During a read operation on a 6T bitcell, noise is injected from the bitline through the pass gate

transistors to the node holding a ZERO value. Read upset occurs when the voltage transient on

the ZERO node causes the bitcell value to flip. Read upset tolerance depends heavily on the cell

ratio (on-current ratio of the pull down to pass gate transistors) as well as the feedback from the

cross coupled inverters. Write stability requires adequate pass gate transistor strength to overwrite

the value held in the bitcell. The most critical transistors for a write are the pass gate device

connected to the BL at a ZERO value and the pull up PMOS holding the bitcell node to ONE.

The requirements for both read and write stability place contradicting requirements on pass gate
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strength. For this reason, at lower VDDs, 6T bitcells must be sized up substantially or doped

differently to achieve both read and write stability, or they may not be able to achieve both.

4.2.2 SRAM Assist Circuits

As an alternative to sizing the 6T bitcell, assist circuits can be used to prevent failure. Read

upset can be prevented by lowering the WL voltage in relation to the SRAM array VDD [43].

This reduces the cell ratio of the bitcell but increases delay, hurts write stability and requires

an additional voltage source. To prevent write failures a dual-VDD WL or additional write assist

circuitry can be employed. In a dual-VDD scheme, WL voltage is only reduced when a read access

is performed. This requires additional decoding and a more complex wordline driver to select

between two WL voltages.

Dual-VDD WL and other schemes have also been proposed to enhance write robustness. During

a write operation, the WL voltage can be increased above the SRAM array VDD, increasing the

effective pass gate strength [44]. Another way to increase the pass gate strength and increase write

stability is to pull the bitline to a negative voltage [45]. The negative BL voltage must not turn

on unaccessed devices on the same BL and must not cause intolerable junction leakage. Both the

dual-VDD and negative BL techniques require an additional voltage source. Another write assist

method droops the SRAM array VDD and GND during a write [47][46]. This reduces the strength

of the cross coupled inverters that hold the bitcell state, facilitating write. VDD drooping can be

implemented with diode drops in shared headers and footers. The drooped supplies must be shared

in a row or column, and unaccessed drooped bitcells must retain their state.

4.2.3 8T Bitcell

The 8T in Figure 4.3b uses two additional transistors over the differential 6T bitcell to isolate

the read and write paths [42]. This enables separate optimization of the read and write mechanisms.

The two stacked NFETs are connected to additional read word and read bit lines (RWL and RBL)

as well as one bitcell node to perform a single-ended read. This read circuitry eliminates the read

upset failure mode. A write operation is performed similarly to a write in the differential 6T bitcell,

however, since the pass gate devices and cross coupled inverters are not used for reading, they can

42



be optimized solely for write.

The 8T bitcell has the same timing failure mode as the differential 6T. However, since the 8T

read is single ended, differential sense amplifiers cannot be used to improve delay and minimize

read bitline swing. For our study, we sense an 8T read using the same sense amplifier structure

with one input tied to a reference voltage. The reference voltage must be sufficiently below VDD

to sense the read of a ONE. This necessitates that the bitline falls below the reference voltage to

sense a ZERO, increasing the delay and bitline swing for an 8T read. In our study, this delay must

be recuperated by optimizing the stacked NFETs used for reading. Increasing the strength of those

devices does not exacerbate other failure modes, however, it incurs area and energy penalties.

4.3 Reliability Analysis using Importance Sampling

4.3.1 Scaling Methodology for Iso-robustness Low VDD Operation

When SRAM bitcells are naively scaled into the near-VT H VDD region, significant energy gains

are achieved, but random dopant fluctuations (RDF) and other process variations lead to functional

failures and low yield. In our study we will examine the robustness of 6T and 8T SRAM in a 65nm

process when VDD is scaled to the near-VT H region. We constrain all bitcells at all VDDs to have

the same robustness as the differential 6T bitcell at 1V with sizes taken from commercial designs.

To meet these constraints as the bitcells are scaled into the near-VT H region, the bitcell device’s

geometry and dopings are optimized, or assist circuits are tuned. The delay, density, and energy of

the final bitcells are compared to find the advantages and disadvantages of all designs.

4.3.2 Sizing and Doping Methodology

For our sizing and doping study, we will adjust device strengths to prevent functional failure

when VDD is reduced. We constrain the bitcell delay to scale with logic, such that memory latency

(in cycles) is not affected when VDD is scaled. The wordline driver, bitline driver, and bitcell delays

are monitored in this study. The bitcell delay for a read is measured to the time when adequate

bitline swing is developed for differential or single-ended sensing with a commercial current-mode

sense amplifier.
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Figure 4.4: Design Methodology for yield-driven near-threshold SRAM.
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In modern SRAM designs, VT H is optimized separately from VT H for logic to improve robust-

ness and performance. The 65nm process used in this study has a nominal VDD of 1.1V and uses

separate NFET VT Hs of 560mV and 520mV for the pass gate and pull down devices, respectively.

These VT Hs are carefully chosen by manufacturers to enhance performance at nominal VDD, how-

ever as VDD is scaled down, the criticality of failure modes and thus the optimal VT Hs change.

Optimizing VT H can help SRAM meet delay requirements as well as control the current ratios

between devices to balance probabilities of different failure modes. When VT H is tuned, σVT H is

calculated appropriately according to the device models. Circuit designers have limited flexibility

to tune VT H , therefore, in this study we will optimize the device geometry alone and also geom-

etry with individual device VT Hs. Reasonable limits are placed on VT H to ensure realistic doping

concentrations and tolerable leakage power.

4.3.3 Assist Circuit Methodology

In our study of assist circuits, we will maintain bitcell robustness as VDD is scaled down by

adjusting the peripheral circuits. Assist circuits are unnecessary for the 8T bitcell because there

is no read upset failure mode and write stability can be maintained with minimal sizing. The 6T

bitcell design in our study is taken from a commercial design optimized for super-VT H operation

and no device sizing or VT H tuning is performed. To maintain read stability, a dual-VDD WL with

reduced read voltage is used. This read assist circuit incurs a delay penalty, precluding iso-latency

voltage scaling, so there is no delay constraint for the assist circuit study. For write robustness,

three methods will be compared: overdriven WL, negative BL, and supply rail drooping. In the

latter two cases, the assist circuits must be adjusted appropriately to not disturb unaccessed bitcells.

The resulting decrease in bitcell performance and changes in energy consumption are measured.

4.3.4 Robustness Calculation using Importance Sampling

At this point, an accurate metric of SRAM robustness is necessary to determine when opti-

mization is complete. SRAM robustness is often measured using SNM because it is relatively easy

to compute. However, SNM does not consider the dynamic nature of noise injection into bitcells.

Since the probability of injecting the same amount of noise changes as VDD is scaled, SNM does
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not translate directly to SRAM yield. Corner cases can also be used to measure robustness, how-

ever, in general the supplied corner cases only consider global variation and not device mismatch.

Since mismatch has a strong effect on SRAM yield, these cases are not sufficient. Corner cases

involving mismatch can be performed but have several drawbacks. First, different transistors have

differing criticality for SRAM functionality, but in corner case analysis the same amount of vari-

ation is placed on each device, making the analysis incomplete. Second, calculating SRAM yield

based on corner case simulations is non-trivial.

For a complete look at SRAM reliability sampling methods like Monte Carlo are necessary. In

Monte Carlo sampling, the number of passing bitcells is divided by the total number of iterations

(n) to find the expected yield, as shown in Equation 4.1 [53] [54] [55]. Process parameters such

as VT H and gate length are selected from a probability density function (PDF), which represents

the natural variation in the process parameter. As shown in Figure 4.5, the PDF of VT H in SRAM

devices is modeled as a normal distribution. Since caches contain many bitcells, the failure rate of

each one must be very low in order to have high yield for the cache. For example, to have a 99%

yield for a small 8kB SRAM, the bitcell failure rate must be 1.53×10−7. To calculate this bitcell

yield using Monte Carlo, at least 10 million simulations must be performed, making this procedure

computationally intensive. For larger caches, the required bitcell failure rate is even lower and

complete Monte Carlo analysis is almost infeasible.

Y =
1
n∑

n
f (x) where f (x) = 1, pass;0 f ail (4.1)

Y =
1
n ∑

g(x)

p(x)
g(x)

(4.2)

p(x) = ∏ 1
σ
√

2π
exp

(x−µ)2

2σ2 f (x) (4.3)

g(x) = ∏ 1
σ
√

2π
exp

(x−µ+4σ)2

2σ2 (4.4)
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Figure 4.5: For importance sampling, device VT Hs are selected from the sample probability density
function (SPDF). The SPDF is created by shifting the natural VT H PDFs into the failure region by
introducing mismatch between devices. By selecting VT H values from this region of interest, the
SRAM failure modes can be more quickly analyzed.

Y =
1
n ∑

g(x)

∏ 1
σ
√

2π
exp (x−µ)2

2σ2 f (x)

∏ 1
σ
√

2π
exp (x−µ+4σ)2

2σ2

(4.5)

For our study, we choose importance sampling as an efficient and accurate way of calculating

SRAM robustness. As shown in Figure 4.5 and Equations 4.2 to 4.5, the importance sampling

technique chooses a new sampling PDF (SPDF) for each transistor so that more failures are sim-

ulated. The VT H of each transistor is shifted by the value sampled from the PDF plus 4σ, to be

justified below, to introduce enough mismatch into the bitcell to increase the probability of failure.

Since the natural occurrence of these highly skewed devices is rare, the importance samples are

then weighted by the ratio of the probability of the large VT H shift in each transistor to the prob-

ability that these VT H shifts were sampled. These weighted values are then used to calculate the

bitcell yield. This method allows us to accurately measure the region of interest where SRAM can

fail with greatly reduced computational complexity.

Since the sampling PDF and number of importance samples have a large impact on experimen-
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Figure 4.6: The natural probability density function (PDF) is shifted into the failure region to
create the sample PDF (SPDF). If the SPDF is too similar to the PDF, then simulation runtime to
calculate yield is long because few failures are seen. If the SPDF is too different from the PDF
then more samples are necessary for accurate yield calculations.

tal results, they were carefully chosen to maintain accuracy in the simulation while still reducing

simulation runtime. A small VT H shift in the sample PDF would not introduce a large number of

failures, thus negating the variance reduction effect of importance sampling. Conversely, an overly

large VT H shift introduces failures, but causes the sample weighting to be small and reduces the

accuracy of the simulation. A differential 6T bitcell is studied to find the optimal sampling PDF.

As shown in Figure 4.6, with less than a 4σ VT H shift the sample failure rate is very low. Above a

4σVT H shift the calculated failure rate drops and is inaccurate. Therefore, a 4σ shift is chosen for

our study. After a sufficient number of importance samples have been performed, the calculated

failure rate converges to its final value. Figure 4.7 shows the calculated failure rate converging and

more samples are taken. We determine that 20,000 samples are sufficient for accurate results. To

measure the failure rates in our study with Monte Carlo, at least 1012 samples are needed, making

importance sampling 50 million times faster.
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Figure 4.7: After a sufficient number of importance samples have been simulated, the calculated
yield will converge to the correct value.

4.4 Experimental Results

4.4.1 Bitcell Sizing and Doping in Near-threshold SRAM

We examine the area and energy of 6T and 8T bitcells when VDD is scaled down, robustness is

maintained through sizing, and delay is constrained to scale with logic. The analysis is performed

with and without the ability to individually adjust the pass gate, pull down and pull up device

VT Hs. The iso-robustness bitcell sizings are plotted in Figure 4.8. VT H tuning dramatically reduces

the required bitcell area at low voltage. VT H is often set higher for pass gate devices than for

pull down devices to prevent read upset failures at super-VT H VDD. However, when VDD is scaled

to near VT H VDDs, this VT H selection makes the pass gates too weak for write robustness. This

effect is especially strong when the pass gates enter sub-VT H operation, but other devices are still

in the near-VT H regime. If VT H is a fixed parameter, set an a value optimized for super-VT H

operation, then SRAM bitcells must be sized by 400% at 500mV, and voltage scaling to the sub-

VT H regions is not practical for iso-robustness operation. Tuning VT H enables balancing of the

SRAM failure modes. In our study, the highest density, robust SRAM is achieved by increasing

pass gate VT H to prevent read upset for near-VT H SRAM. As VDD is further scaled, the optimal
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Figure 4.8: Bitcells can be sized up to maintain robustness when VDD is scaled. The density of
iso-robustness sub-VT H SRAM is improved when VT H tuning is used.

pass gate VT H is lower because write failures become critical. When VT H is tuned, robustness

can be maintained in 6T SRAM at 500mV with a 40% area penalty. Across all VDDs studied, VT H

tuning with minimal sizing is sufficient to maintain robustness in 8T SRAM, enabling high-density

low-voltage memory.

VDD scaling from 1V to 500mV reduces dynamic energy by more than 50% for all bitcells

studied, with a 61% reduction for 8T SRAM with VT H tuning, as seen in Figures 4.9 and 4.10.

In our study we consider energy from the wordline drivers, bitline drivers and bitcells only. If

other memory peripheries, such as the decoder and sense amplifiers, are voltage scaled with the

SRAM bitcells, then greater energy gains than those reported are possible. Without VT H tuning

and at low VDDs, bitcells must be aggressively sized to control relative device strengths under

RDF variation and maintain robustness. Device sizing substantially increases wordline and bitline

capacitances, thus reducing the energy benefit of voltage scaling. For sub-VT H robustness without

VT H tuning, devices must be sized up to a level where the energy benefit is eliminated. When

VT H tuning is used, less dramatic sizing is needed, keeping capacitance and energy lower. Using

VT H tuning for near-VT H 550mV SRAM reduces dynamic energy by 44% and 56% for 6T and 8T

SRAM, respectively, over the fixed VT H case. For 8T SRAM, iso-robustness operation at 300mV
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Figure 4.9: When bitcells are sized for robustness without VT H tuning, the energy benefits from
iso-robustness scaling of 65nm SRAM to the near-VT H region are limited because wordline and
bitline capacitances from upsized devices are prohibitive.

is obtained with little device sizing and an 83% energy reduction is achieved.

Above 500mV, leakage energy per cycle is relatively constant, whereas below 500mV, leakage

increases dramatically. Although leakage power scales down linearly with VDD, leakage energy

per cycle is also proportional to delay, which increases exponentially in the sub-VT H region. Since

dynamic energy decreases and leakage increases when VDD is scaled down, a minimum energy

point (EMIN) is achieved at some intermediate voltage (VMIN) [37]. As seen in Figures 4.11 and

4.12, VMIN and EMIN are heavily dependent on activity factor, which we define as the average

fraction of bitcells accessed per cycle. For L1 caches, which are generally small with high activity,

total energy is almost entirely dynamic, making voltage scaling a desirable method for energy

reduction. Based on typical memory access patterns, an 8T 8-way 1kB L1 cache could have an

activity factor of 10−2 and a VMIN of 450mV. In L2 caches, which are larger with lower activity,

the benefits of voltage scaling are reduced and VMIN rises. A large L2 cache could easily have an

activity factor lower than 10−6, making voltage scaling below 850mV detrimental.
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Figure 4.10: When bitcells are sized and VT H is tuned for robustness, dynamic energy can be
reduced by as much as 83% in iso-robustness SRAM using voltage scaling.

Figure 4.11: When bitcells are sized for robustness without VT H tuning, the VDD for minimum
energy computing is above 700mV, because the large device sizes needed to maintain robustness
in near-VT H SRAM result in large capacitances and switching energy.
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Figure 4.12: When bitcells are sized and VT H is tuned for robustness, 8T L1 caches with high
activity factor can benefit from voltage scaling to 300mV.

4.4.2 Assist Circuits for Near-threshold SRAM

Assist circuits can be used to increase SRAM robustness and enable near-VT H operation. The

dual-VDD WL, negative BL, and supply drooping assist circuits considered in this study increase

SRAM stability by modifying control or VDDs during accesses. The voltage levels necessary

for iso-robustness operation are shown in Figure 4.13. Of the three write assist circuits studied,

only overdriven WL enables sub-VT H SRAM. A functional minimum-sized SRAM cell with no

VT H tuning and an SRAM array VDD of 300mV, requires a write WL voltage of 650mV. This

near-VT H WL voltage requires additional access energy and precludes unaccessed bitcells on the

WL. Negative BL and supply drooping can keep robustness high when VDD is scaled to 650mV

and 600mV respectively. Below these VDDs, the aggressive assist circuits needed to maintain

robustness disturb unaccessed bitcells. For the negative BL scheme, when the BL is driven below

GND for a write, pass gates of unaccessed bitcells are partially on and can cause erroneous writes.

For unaccessed bitcells with supply drooping, process variation and supply transients cause the

loss of state.

An underdriven WL, helps to prevent read upset failures but also reduces performance, shown
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Figure 4.13: Assist circuits modulate SRAM voltages and can maintain robustness as VDD is scaled
down. Underdriving the WL during read prevents read upset. Overdriving the WL during write
can enable iso-robustness sub-VT H SRAM. Negative BL and supply drooping disturb unaccessed
bitcells below 600mV.
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Figure 4.14: The delay of iso-robustness 6T bitcells is significantly greater with read assist than
with sizing and doping.

in Figure 4.14. At 500mV, the WL voltage must be reduced to 250mV to have the same robustness

as the unassisted bitcell with a 1V supply, resulting in a 200x increase in bitcell delay. This

excessively large delay also manifests itself as intolerable leakage energy, shown in Figure 4.15. As

a result, when assisted SRAM circuits are scaled to the near-VT H region, leakage energy dominates

and the VMIN never falls below 600mV, regardless of activity factor. The active energy for the three

write assist circuits is almost the same, and the VMIN for all assist circuits is shown in Figure 4.16.

4.5 Conclusions

We have compared 6T and 8T bitcells in various voltage domains with an iso-robustness con-

dition. Our study is enabled by using importance sampling to accurately calculate SRAM yield

50 million times faster than with Monte Carlo sampling. We find that energy gains of 50% can be

achieved for small caches by halving VDD to 500mV with no decrease in robustness and a small

area overhead. At 300mV, 8T SRAM with low VT H devices can deliver an 83% energy reduction
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Figure 4.15: When assist circuits are used to maintain SRAM robustness, dynamic energy can be
reduced by 50% by halving VDD.

Figure 4.16: When assist circuits are used to maintain SRAM robustness, VMIN for caches with
high activity factor can be as low as 600mV.
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over the nominal case. For L1 caches, the VDD for minimum energy iso-robustness operation can

be as low as 300mV, making voltage scaling a desirable technique for low-energy computing. As-

sist circuits can only enable iso-robustness SRAM to scale to 600mV before delay and leakage

become prohibitive. The method shown in this paper assesses design tradeoffs in SRAM quickly

and accurately, allowing a designer to select an appropriate SRAM architecture and sizing.
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CHAPTER 5

Crosshairs SRAM - An Adaptive Memory for Mitigating

Parametric Failures

5.1 Introduction

In Chapter 4 we examined robust, low VDD, traditional SRAM designs for cubic-millimeter

microsystems. Sizing, VT H selection, and assist circuits were used to maintain stability margins

as VDD was scaled to reduce power. Each of the techniques used to enable low VDD had tradeoffs

in area, leakage, or complexity, which were quantitatively analyzed. In this chapter and Chapter 6,

we present novel bitcell techniques to enable low-power low VDD SRAM with improved stability

margins and more favorable design tradeoffs.

Crosshairs mitigates the effects of process variations, which are exacerbated at low VDD. Ex-

cessive process variation causes parametric failures (PFs), including timing and stability failures.

For example, voltage scaling amplifies the effects of VT H mismatch caused by random dopant fluc-

tuations [56] and lithographic double patterning induced gate length variation and VT H rolloff [57].

As a result, SRAM requires higher levels of error correction coding (ECC) [58] and redundancy

[59] to satisfy yield requirements. We propose the Crosshairs method to detect and adaptively cor-

rect PFs. Crosshairs tunes the SRAM’s power and ground supply networks to mitigate excessive

variation. It improves yield with respect to timing and stability constraints. The Crosshairs bitcell

has the same area, transistor count, and number of metal layers as a commercial design.
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5.2 Crosshairs SRAM Method

5.2.1 Controlling Bitcell Power Supplies

To identify PFs, a BIST performs March tests on the SRAM. When it detects a failure, it

determines the nature of mismatch in the bitcell by checking if write-ZERO/read-ZERO or write-

ONE/read-ONE accesses failed. The BIST then uses this information to tune VDD and GND of

each bitcell inverter with respect to its cross-coupled counterpart, canceling process variation and

restoring bitcell functionality. Each bitcell has connections to left and right vertical power rails

(VDDL and VDDR) and horizontal ground rails (GNDL and GNDR). It is identical to a commercial

differential 6T design except that the vertical VDD rail is split into VDDL and VDDR (Fig. 5.1). This

modification does not require a larger bitcell or more metal layers (Fig. 5.2). Crosshairs eliminates

PFs by adjusting VDD in the column and GND in the row where a PF occurs (Fig. 5.3). Thus,

the orthogonal tuned supply rails target PFs at their intersection. Each column shares VDDR and

VDDL rails and adjacent rows share GNDR and GNDL rails (Fig. 5.4). To tune VDD, PMOS headers

connect VDDR and VDDL to one of two global power supplies (V DDHI and V DDLO). Similarly,

NMOS footers connect GNDR and GNDL to either GNDHI or GNDLO (Fig. 5.5). The BIST

generates control signals for the headers and footers. An on-chip linear regulator can generate the

global VDDs and GNDs. The voltage difference between these global supplies is defined as the

Crosshairs tuning voltage.

5.2.2 Fixing Parametric Failures

Tuning the supplies of each bitcell inverter with respect to its cross-coupled counterpart cancels

process variation and eliminates PFs. Initially the stronger VDD and GND (V DDHI and GNDLO)

supply all bitcell inverters. When writing a ZERO to node D in Fig. 5.1, the left pass gate (PGL)

overpowers the left pull up (PUL), pulling D low enough to initiate the write mechanism. Process

variation can create a write PF by making PGL too weak with respect to PUL. To increase write

margin and fix this PF, Crosshairs weakens PUL by connecting VDDL to V DDLO and GNDR to

GNDHI , reducing the likelihood of a write PF by 9x based on importance sampling Monte Carlo

SPICE simulations [5]. When reading a ZERO from node D, charge from the bitline (BL) is
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Figure 5.1: Crosshairs recovers parametric failures (PFs) by separately tuning the VDD and GND
supplies of each inverter within a bitcell.
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Figure 5.2: The Crosshairs bitcell is a minimally modified commercial differential 6T design that
does not require larger area or more metal layers.
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Figure 5.5: Headers connect each VDD column (VDDL, VDDR) to one of two global supplies (V DDHI ,
V DDLO). Similarly footers connect each GND row (GNDL, GNDR) to global grounds (GNDHI ,
GNDLO).

injected onto D, potentially causing a read upset PF by overwriting the value to a ONE. This is

more probable if process variation causes the left pull down (PDL) to be too weak with respect to

PGL or the timing constraint. To correct this, Crosshairs weakens the right pull down (PDR) device

by connecting GNDR to GNDHI . Similarly the left pull up (PUL) device is weakened by connecting

VDDL to V DDLO. In this configuration the bitcell holds a stronger ZERO and the probability of a

read PF decreases by 3x, based on importance sampling [5]. A larger simulated static noise margin

(SNM) reflects the increase in read stability (Fig. 5.6a). As seen from the previous examples of

write and read PFs, Crosshairs uses the same voltage configuration to improve both read-ZERO

and write-ZERO margins. Similarly, lowering VDDR and raising GNDL increases read-ONE and

write-ONE margins. Thus, to properly apply the Crosshairs algorithm, the BIST does not need to

determine whether the write or read access failed. Rather, it must determine only whether a ONE

or ZERO access failed. This allows the BIST to gather all the information it needs about process

variation in the SRAM array using simple March test algorithms.
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Figure 5.6: a) Crosshairs restores simulated read SNM in a PF cell. b) It has less impact on non-PF
cells in the same column or row as a PF cell because either VDD or GND is tuned but not both.

5.2.3 Net Reduction in SRAM Failures

Crosshairs tuning can positively or negatively impact non-PF cells in the same column or row

as a PF. It adjusts the VDD rails in each column based on the process variation in the PF cell, which

does not necessarily reflect the variation in the other cells. Similarly, Crosshairs will impact the

GNDs of cells in the same row as a PF cell. However, Crosshairs will not tune both VDD and GND

in non-PF cells, greatly decreasing the potential negative impact on stability margins (Fig. 5.6b).

The distribution of each bitcell with process parameters is weighted at the mean, with few cells at

tails of the distribution that fail yield criteria (Fig. 5.7a). Applying Crosshairs tuning relaxes the

yield criterion on one end of the distribution, but tightens it at the other tail. The conditional PDFs

for PF and non-PF cells dictate that Crosshairs is likely to fix a given PF, but unlikely to cause new

errors. This probability is calculated using importance sampling as 95.5% for a 128x256 array

with a 20mV tuning voltage [5] (Fig. 5.7b).

5.2.4 Header and Footer Sizing

Headers and footers require proper sizing to prevent IR drop from impacting robustness but

should be small for a low area overhead. Fig. 5.8 shows a simulation demonstrating the affect of

these sizes on robustness. The plot shows robustness in terms of the maximum VT H mismatch that
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Figure 5.7: Crosshairs has a high probability of fixing PFs and a low probability of creating PFs,
resulting in a net reduction in simulated failures.

the bitcell can tolerate without functional failure. For each VDD column, we select a header width

of 2x the bitcell PU device. Further increasing header size achieves only modest improvements in

stability. Crosshairs requires only a small header since only one accessed cell per column draws

current from the VDD rail. However, every bit can simultaneously draw current from the same GND

rail. As such, the footer size is 2x the total PD width for one word. The presented array uses a

128-bit word and footer size decreases proportionally with word length.

5.3 Measurement Results

We fabricated and measured 70 chips with 128x256 32kb Crosshairs SRAM banks in a 45nm

CMOS process (Fig. 5.9). We designed Crosshairs with feedback from the foundry to violate logic

design rules, as is typical for SRAM. This allows the bitcell to match the area of a commercial dif-

ferential 6T SRAM design. Crosshairs decreases array efficiency by 12.5% because of additional

peripheral circuits.

5.3.1 Recovering Timing Failures

Local process variation creates slow bitcells, which then dictate the overall performance of an

SRAM array. By targeting slow bitcells, Crosshairs mitigates process variation and increases array
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Figure 5.10: Measured results show that Crosshairs can improve array performance by 13% and
has a modest leakage overhead.

performance by 13% at a tuning voltage of 20mV (Fig 5.10). It achieves the optimal performance

at a tuning voltage that also minimizes the number of simulated and measured stability failures. It

creates these performance gains with less than a 2.5% leakage overhead.

5.3.2 Recovering Stability Failures

We record bitcell functionality with no latency requirement for 70 test chips. To measure the

impact of Crosshairs on stability, we must first observe some initial PFs. Since nominal PFs are

rare, for testing purposes we artificially generate PFs through VDD scaling. Then we recover the

resulting PFs using Crosshairs to demonstrate the method’s effectiveness. Crosshairs fixes 9 out of

9 initial PFs in an array at a VDD of 532mV with a 26mV tuning voltage (Fig. 5.11). It recovers 15

out of 16 PFs at a VDD of 526mV. The optimal Crosshairs tuning voltage is between 20 and 26mV

(Fig. 5.12). These voltages are high enough to fix PFs without creating new failures in tuned rows

or columns. In this tuning range, Crosshairs fixes nearly all PFs in arrays with between 1 and 16

initial VDD-scaling-induced PFs. ECC and redundancy can fix a limited number of PFs based on

the spatial distribution of failures (Fig. 5.13). Single-error-correct double-error-detect (SECDED)

ECC can only fix one PF per word. Higher levels of ECC incur additional area and performance

penalties. One measured SRAM array did not yield with ECC. Crosshairs recovers this array
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Figure 5.11: Crosshairs recovers measured PFs induced by VDD scaling from the nominal voltage
of 1100mV. Using a fixed tuning voltage reduces the overhead for power supply generation with
little decrease in effectiveness.

at tuning voltages ranging from 10mV to 50mV. Using redundancy, each column or row with a

PF requires an additional redundant row or column, incurring an area and complexity penalty.

Crosshairs with a tuning voltage of 26mV reduces the average number of required redundant rows

for 100% yield from 4.56 to 1.95. It reduces the required number of redundant columns from 4.46

to 1.91. In addition, the proposed method can be used on top of ECC and redundancy. Fig. 5.14

presents the number of recovered PFs versus initial PFs for all measured chips with a fixed tuning

voltage of 26mV. The number of chips at each data point is represented by circle size. Crosshairs

fixes an average of 70% of PFs for reasonable initial failure rates lower than 0.1%.

5.4 Conclusions

Crosshairs recovers 70% of PFs in 70 128x256 test arrays by tuning VDD and GND of each

SRAM bitcell inverter with respect to its cross-coupled counterpart. These gains are achieved with

little modification to a commercial 45nm 6T design and no increase in bitcell area. Crosshairs

increases SRAM yield and eliminates or reduces the overheads for other yield improvement tech-

niques such as ECC or redundancy.
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CHAPTER 6

A Dense 45nm Half-differential SRAM with Improved Voltage

Scalability and Operating Margin

6.1 Introduction

In this chapter, we present a robust, low VDD SRAM bitcell for millimeter-scale microsensors

with more favorable design tradeoffs than traditional SRAM techniques. Dense, low-power SRAM

enables increased data storage and more advanced processing algorithms, while meeting the strict

energy budgets of cubic-millimeter systems. Low power techniques such as voltage scaling, which

were discussed in Chapter 4, have penalties in robustness, area, timing, or complexity. Many of

these penalties arise because of the exacerbated effect of process variations at low VDD. Process

variations such as random dopant fluctuation and line edge roughness degrade SRAM operating

margins, increase parametric failures from timing and stability, and decrease yield [60].

Since designs commonly have large SRAMs, each bitcell must be extremely robust to achieve

high chip yield. SRAM designs are typically read-stability limited, so the pull down (PD) must be

strong relative to the pass gate (PG) to prevent read upset or destructive read failures. Many process

technologies achieve this by using a higher threshold voltage (VT H) and longer gate lengths for

PGs, in addition to increasing PD width. However, increasing PG VT H and L reduces performance

and degrades write margins, creating an upper bound on the limiting stability margin. 8T bitcells

separate read and write circuitry to increase margins at the expense of area and leakage [61]. We

present HD-SRAM to enable low-power SRAM with lower overheads by achieving high stability
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margins when the effects of process variations increase. HD-SRAM improves voltage scalability

and operating margins with no increase in bitcell size or leakage.

6.2 Half-differential SRAM Method

6.2.1 Operation, Sizing and VT H Selection

HD-SRAM performs a write operation in the same way as D-SRAM. Both PGs turn on and a

differential value on the bitlines (BLs) overwrites the cell value. However, during a read operation

only one PG turns on and can discharge only one BL (Fig. 6.1). Single-ended read enables asym-

metric sizing and VT H-selection optimizations to increase robustness without increasing bitcell

area. We downsize the write-only pull down device (PDW) because it does not strongly impact

read stability. Then, we apply the resulting area savings to increase the read-and-write side PD

(PDRW) width and PG (PGRW) length, improving read margin. Since the length of PGRW is

increased, we can increase the lengths of PDW and the write-only pull-up device (PUW) no area

penalty. This reduces the likelihood of read upsets by decreasing the positive feedback between the

cross-coupled inverters and increases the write-one margin. In addition to increasing PDW length,

we use the higher NMOS VT H usually reserved for PGs for this device to help prevent read upsets.

Using a low VT H device for the write-only pass gate (PGW) further increases write-one margin

but decreased the overall simulated robustness and increased leakage, so the device is set to the

high VT H . Previous asymmetric SRAMs do provide silicon results and either decrease robustness,

increase bitcell area, and/or do not consider the physical design of SRAM [62] [63] [64].

6.2.2 Physical Design

The HD-SRAM bitcell has the same area as the commercial D-SRAM bitcell in this 45nm

process (0.374µm2) to allow for an accurate comparison. The layout violates logic design rules to

achieve higher density, which is typical for commercial SRAM but uncommon in research efforts

[62] (Fig. 6.2). We implemented the design with feedback from the foundry regarding design,

lithography, and design for manufacturing (DFM) rules. Two wordlines (WLs) are on Metal 4. All

polysilicon is linear and unidirectional to enable double patterning. Unlike most D-SRAM, PDW
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Figure 6.2: HD-SRAM is the same size as a commercial differential 6T design (D-SRAM). Both
designs exceed logic design rules for higher density.

and PGW are the same width in HD-SRAM, eliminating a notch in the source-drain region and

improving DFM.

6.2.3 Simulated Results

HD-SRAM achieves higher robustness than D-SRAM, even when peripheral assist circuits

and optimal technology selection are applied only to D-SRAM. HD-SRAM has a 85-mV higher

simulated static noise margin (SNM) than D-SRAM at the nominal VDD of 1.1V (Fig. 6.3a). The

HD-SRAM SNM remains higher as VDD scales to below 500mV (Fig. 6.3b).

Since SRAM is typically read-stability limited at nominal VDD, one read assist technique re-

duces the WL voltage (VWL) to increase read margin [65]. As a measure of robustness, we simulate
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Figure 6.3: HD-SRAM has an 85mV-higher simulated SNM than D-SRAM at nominal VDD. SNM
remains higher as VDD scales below 500mV.
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the maximum VT H variation that the bitcell can tolerate without functional failure for read, write,

and hold operations. We simulate the designs in SPICE using importance sampling and normal-

ize the robustness to a typical 45nm distribution of VT H with σ=40mV [5]. As D-SRAM VWL

decreases from 1.1V to 1.02V, read-stability and total robustness increase from 4.2σ to 4.8σ (Fig.

6.4a). However, as VWL further decreases, write margin degrades overall robustness and latency be-

comes prohibitive. Separate voltages can be used for write and read, but this requires pre-decoding

and additional complexity. HD-SRAM without read assistance is more robust than D-SRAM at

any VWL. HD-SRAM robustness further improves with read assistance.

The optimal selection of technology parameters, such as VT H , also improves robustness. In

typical SRAM processes, these parameters are carefully tuned to optimize the design. However,

the nominal VT H selections may trade off robustness for improved performance. We simulate

bitcell robustness in SPICE using importance sampling for theoretical selections of technology pa-

rameters, with reasonable selections of PD, PG and PU VT Hs. The maximum D-SRAM robustness

of 4.8σ is achieved by reducing PD and increasing PG VT H (Fig. 6.4b). This robustness is lower

than both the nominal and maximum HD-SRAM robustness of 6.1σ of 7.0σ, respectively.

6.3 Measurement Results

6.3.1 Test Chips

We fabricated 32kb banks of HD-SRAM and commercial D-SRAM in a 45nm CMOS process

with 1.1V nominal VDD (Figs. 6.5 and 6.6). Each bank uses identical decoders, WL and BL drivers,

and sense amplifiers (SAs). HD-SRAM adds gating logic and WL drivers to support the two WLs

per row, slightly decreasing array efficiency. We tie one HD-SRAM SA input to a reference voltage

to accommodate single-ended read. The test chips do not include assist circuits, error correction

coding, or redundancy, which could be applied to either design. A BIST performs functionality

and speed tests on each design. A summary of results is presented in Table 6.1.
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Figure 6.6: HD-SRAM chip micrograph.

Table 6.1: HD-SRAM results summary.
HD-SRAM D-SRAM

Process 45nm CMOS 45nm CMOS
Bitcell Area 0.37 µm2 0.37 µm2

µ R+W Margin 12.1 σ 11.0 σ
µ VMIN 639 mV 711 mV

Simulated SNM 353 mV 268 mV
Performance 550 MHz 650 MHz
Energy/bit 43 fJ 53 fJ

Leakage/bit 55 pW 64 pW
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SRAM at nominal VDD. Array performance is dictated by the slowest cells and HD-SRAM exhibits
less timing variation.

6.3.2 Performance, Power and Leakage

D-SRAM is 15% faster than HD-SRAM including WL, bitcell, and BL delays (Fig. 6.7). In a

microprocessor, this delay amortizes over register, interconnect, decoder, sense amplifier and mul-

tiplexer delays. HD-SRAM has larger read devices that exhibit less timing sensitivity to process

variation, decreasing array latency that is dictated by the slowest cells.

HD-SRAM has an 18%-lower access energy than D-SRAM (Fig. 6.8a). HD-SRAM read

energy is lower since only one WL switches and capacitance on this WL is lower than the total

D-SRAM WL capacitance. Also, in the read-one case, the BL does not discharge. The HD-SRAM

write energy is slightly higher because of higher total capacitance on the WLs.

HD-SRAM has a 14%-lower leakage power than D-SRAM (Fig. 6.8b). The leakage improve-

ments result from longer gate lengths selected for PGRW, PDW, and PUW. In addition, PDW has

a higher VT H than in D-SRAM.
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Figure 6.8: HD-SRAM has an 18% lower measured access energy and a 14% lower measured
leakage than D-SRAM.

6.3.3 Voltage Scalability

We record the minimum fully-functional VDD (VMIN) and error counts from 80 chips with VDD

scaling-induced errors. Error maps from one chip show that VMIN is 800mV for D-SRAM, while

every HD-SRAM bitcell functions down to 650mV (Fig. 6.9). Across all 80 test chips, HD-SRAM

has an average VMIN that is 72mV lower than D-SRAM (Fig. 6.10). Only 4 HD-SRAM arrays

have VMIN above 700mV, whereas 35 D-SRAM arrays fail this criterion. To observe a significant

number of errors at VDDs where failures are rare, VWL is raised by 50mV to aggravate read failures.

Since these cells are typically read stability limited, this emphasizes variation and emulates cells at

the tails of the distribution, which are expected in larger arrays. Under this condition, HD-SRAM

has a 100 lower failure rate than D-SRAM (Fig. 6.11).

6.3.4 Operating Margin

To measure read and write margin when few nominal failures are observed, we stress both

designs by raising and lowering VWL with respect to VDD, which supplies the cross-coupled invert-

ers (Fig. 6.12). Raising VWL relative to VDD globally aggravates read failures by increasing PG

strength and overdrive relative to PD. Similarly lowering VWL reduces PG strength and induces

write failures. The shmoo plot in Fig. 6.13 shows that lowering VDD by 25mV causes the first
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D-SRAM array failure when VWL remains fixed at 1.1V. VDD must be decreased by 150mV to

cause any HD-SRAM failure. This demonstrates a significantly higher HD-SRAM read margin.

Similarly, VWL must be reduced by 375mV and 425mV to cause HD-SRAM and D-SRAM write

failures, respectively. The artificial shift in device strengths caused by changing VWL is mapped to

an approximate effective-VT H variation tolerance by normalizing the change in device overdrive

to the distribution of VT H caused by process variation. This represents the variation a bitcell can

tolerate without functional failure. Using a typical 45nm VT H distribution with σVT H=40mV, read

and write margins are calculated as follows:

Margin =
|VDD−VWL|1stFailure

40mV
(6.1)

Over all 80 test chips HD-SRAM exhibits a 2.3σ higher operating margin at 1.1V, which is the

minimum of write and read margins and predominantly limited by read stability. However, write

margin can be traded for read stability, and vice versa, through device sizing and technology VT H

selection, so the sum of read and write margins (R+W) represents a fairer comparison for balanced

designs. The average HD-SRAM R+W margin is 1.1σ higher than D-SRAM at 1.1V (Fig. 6.14).

HD-SRAM also exhibits a smaller spread in R+W margin, with fewer low margin arrays that fail

yield criteria (Fig. 6.15).
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CHAPTER 7

Conclusion

We demonstrate the two first-known, complete, self-powered millimeter-scale computer sys-

tems. These microsystems achieve zero-net-energy operation using solar energy harvesting and

ultra-low-power circuits. A medical implant for monitoring intraocular pressure (IOP) is presented

as part of a treatment for glaucoma. The 1.5mm3 IOP monitor is easily implantable because of its

small size and measures IOP with 0.5mmHg accuracy. It wirelessly transmits data to an external

wand while consuming 4.7nJ/bit. This provides rapid feedback about treatment efficacies to de-

crease physician response time and potentially prevent unnecessary vision loss. A nearly-perpetual

temperature sensor is presented that processes data using a 2.1µW near-threshold ARM R© Cortex-

M3
TM

µP that provides a widely-used and trusted programming platform.

Energy harvesting and power management techniques for these two microsystems enable energy-

autonomous operation. The IOP monitor harvests 80nW of solar power while consuming only

5.3nW, extending lifetime indefinitely. This allows the device to provide medical information for

extended periods of time, giving doctors time to converge upon the best glaucoma treatment. The

temperature sensor uses on-demand power delivery to improve low-load dc-dc voltage conversion

efficiency by 4.75x. It also performs linear regulation to deliver power with low noise, improved

load regulation, and tight line regulation.

Low-power high-throughput SRAM techniques help millimeter-scale microsystems meet strin-

gent power budgets. VDD scaling in memory decreases energy per access, but also decreases sta-

bility margins. These margins can be improved using sizing, VT H selection, and assist circuits,

as well as new bitcell designs. Adaptive Crosshairs modulation of SRAM power supplies fixes

85



70% of parametric failures. Half-differential SRAM design improves stability, reducing VMIN by

72mV.

The circuit techniques for energy autonomy presented in this dissertation enable millimeter-

scale microsystems for medical implants, such as blood pressure and glucose sensors, as well as

non-medical applications, such as supply chain and infrastructure monitoring. These pervasive

sensors represent the continuation of Bell’s Law, which accurately traces the evolution of com-

puters as they have become smaller, more numerous, and more powerful. The development of

millimeter-scale massively-deployed ubiquitous computers ensures the continued expansion and

profitability of the semiconductor industry. NanoWatt circuit techniques will allow us to meet this

next frontier in IC design.
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